Последние поступления

Donald Rogers W. Concise Physical Chemistry models atomic orbital of ethylene molecular modeling chemistry teaching supplies
This book is a physical chemistry textbook that presents the essentials of physical chemistry as a logical sequence from its most modest beginning to contemporary research topics. Many books currently on the market focus on the problem sets with a cursory treatment of the conceptual background and theoretical material, whereas this book is concerned only with the conceptual development of the subject. Comprised of 19 chapters, the book will address ideal gas laws, real gases, the thermodynamics of simple systems, thermochemistry, entropy and the second law, the Gibbs free energy, equilibrium, statistical approaches to thermodynamics, the phase rule, chemical kinetics, liquids and solids, solution chemistry, conductivity, electrochemical cells, atomic theory, wave mechanics of simple systems, molecular orbital theory, experimental determination of molecular structure, and photochemistry and the theory of chemical kinetics.
5846.61 RUR
Peter Comba Modeling of Molecular Properties models atomic orbital of ethylene molecular modeling chemistry teaching supplies
Molecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and / or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28 chapters, written by an international group of experienced theoretically oriented chemists, are grouped into four parts: Theory and Concepts; Applications in Homogeneous Catalysis; Applications in Pharmaceutical and Biological Chemistry; and Applications in Main Group, Organic and Organometallic Chemistry. The various chapters include concept papers, tutorials, and research reports.
12391.42 RUR
Ian Fleming Molecular Orbitals and Organic Chemical Reactions. Reference Edition models atomic orbital of ethylene molecular modeling chemistry teaching supplies
Winner of the PROSE Award for Chemistry & Physics 2010 Acknowledging the very best in professional and scholarly publishing, the annual PROSE Awards recognise publishers' and authors' commitment to pioneering works of research and for contributing to the conception, production, and design of landmark works in their fields. Judged by peer publishers, librarians, and medical professionals, Wiley are pleased to congratulate Professor Ian Fleming, winner of the PROSE Award in Chemistry and Physics for Molecular Orbitals and Organic Chemical Reactions. Molecular orbital theory is used by chemists to describe the arrangement of electrons in chemical structures. It is also a theory capable of giving some insight into the forces involved in the making and breaking of chemical bonds—the chemical reactions that are often the focus of an organic chemist's interest. Organic chemists with a serious interest in understanding and explaining their work usually express their ideas in molecular orbital terms, so much so that it is now an essential component of every organic chemist's skills to have some acquaintance with molecular orbital theory. Molecular Orbitals and Organic Chemical Reactions is both a simplified account of molecular orbital theory and a review of its applications in organic chemistry; it provides a basic introduction to the subject and a wealth of illustrative examples. In this book molecular orbital theory is presented in a much simplified, and entirely non-mathematical language, accessible to every organic chemist, whether student or research worker, whether mathematically competent or not. Topics covered include: Molecular Orbital Theory Molecular Orbitals and the Structures of Organic Molecules Chemical Reactions – How Far and How Fast Ionic Reactions – Reactivity Ionic Reactions – Stereochemistry Pericyclic Reactions Radical Reactions Photochemical Reactions This expanded Reference Edition of Molecular Orbitals and Organic Chemical Reactions takes the content and the same non-mathematical approach of the Student Edition, and adds extensive extra subject coverage, detail and over 1500 references. The additional material adds a deeper understanding of the models used, and includes a broader range of applications and case studies. Providing a complete in-depth reference for a more advanced audience, this edition will find a place on the bookshelves of researchers and advanced students of organic, physical organic and computational chemistry. The student edition of Molecular Orbitals and Organic Chemical Reactions presents molecular orbital theory in a simplified form, and offers an invaluable first textbook on this important subject for students of organic, physical organic and computational chemistry. Further information can be viewed here. «These books are the result of years of work, which began as an attempt to write a second edition of my 1976 book Frontier Orbitals and Organic Chemical Reactions. I wanted to give a rather more thorough introduction to molecular orbitals, while maintaining my focus on the organic chemist who did not want a mathematical account, but still wanted to understand organic chemistry at a physical level. I'm delighted to win this prize, and hope a new generation of chemists will benefit from these books.» -Professor Ian Fleming
11447.91 RUR
Sandor Fliszar Atomic Charges, Bond Properties, and Molecular Energies models atomic orbital of ethylene molecular modeling chemistry teaching supplies
The first book to cover conceptual quantum chemistry, Atomic Charges, Bond Properties, and Molecular Energies deftly explores chemical bonds, their intrinsic energies, and the corresponding dissociation energies, which are relevant in reactivity problems. This unique first-hand, self-contained presentation develops relatively uncomplicated but physically meaningful approaches to molecular properties by providing derivations of all the required formulas from scratch, developed in Professor Fliszar's laboratory. This book is vitally relevant to organic- and biochemists, molecular biologists, materials scientists, and nanoscientists.
8428.68 RUR
Shapiro Moshe Quantum Control of Molecular Processes models atomic orbital of ethylene molecular modeling chemistry teaching supplies
Written by two of the world's leading researchers in the field, this is a systematic introduction to the fundamental principles of coherent control, and to the underlying physics and chemistry. This fully updated second edition is enhanced by 80% and covers the latest techniques and applications, including nanostructures, attosecond processes, optical control of chirality, and weak and strong field quantum control. Developments and challenges in decoherence-sensitive condensed phase control as well as in bimolecular control are clearly described. Indispensable for atomic, molecular and chemical physicists, physical chemists, materials scientists and nanotechnologists.
12391.42 RUR
Valerio Magnasco Methods of Molecular Quantum Mechanics. An Introduction to Electronic Molecular Structure models atomic orbital of ethylene molecular modeling chemistry teaching supplies
This advanced text introduces to the advanced undergraduate and graduate student the mathematical foundations of the methods needed to carry out practical applications in electronic molecular quantum mechanics, a necessary preliminary step before using commercial programmes to carry out quantum chemistry calculations. Major features of the book include: Consistent use of the system of atomic units, essential for simplifying all mathematical formulae Introductory use of density matrix techniques for interpreting properties of many-body systems An introduction to valence bond methods with an explanation of the origin of the chemical bond A unified presentation of basic elements of atomic and molecular interactions The book is intended for advanced undergraduate and first-year graduate students in chemical physics, theoretical and quantum chemistry. In addition, it is relevant to students from physics and from engineering sub-disciplines such as chemical engineering and materials sciences.
11007.61 RUR
Miguel de la Guardia Handbook of Green Analytical Chemistry models atomic orbital of ethylene molecular modeling chemistry teaching supplies
The emerging field of green analytical chemistry is concerned with the development of analytical procedures that minimize consumption of hazardous reagents and solvents, and maximize safety for operators and the environment. In recent years there have been significant developments in methodological and technological tools to prevent and reduce the deleterious effects of analytical activities; key strategies include recycling, replacement, reduction and detoxification of reagents and solvents. The Handbook of Green Analytical Chemistry provides a comprehensive overview of the present state and recent developments in green chemical analysis. A series of detailed chapters, written by international specialists in the field, discuss the fundamental principles of green analytical chemistry and present a catalogue of tools for developing environmentally friendly analytical techniques. Topics covered include: Concepts: Fundamental principles, education, laboratory experiments and publication in green analytical chemistry. The Analytical Process: Green sampling techniques and sample preparation, direct analysis of samples, green methods for capillary electrophoresis, chromatography, atomic spectroscopy, solid phase molecular spectroscopy, derivative molecular spectroscopy and electroanalytical methods. Strategies: Energy saving, automation, miniaturization and photocatalytic treatment of laboratory wastes. Fields of Application: Green bioanalytical chemistry, biodiagnostics, environmental analysis and industrial analysis. This advanced handbook is a practical resource for experienced analytical chemists who are interested in implementing green approaches in their work.
12391.42 RUR
Bruno Pignataro Ideas in Chemistry and Molecular Sciences. Where Chemistry Meets Life models atomic orbital of ethylene molecular modeling chemistry teaching supplies
Ideas in Chemistry and Molecular Sciences gives an account of the most recent results of research in life sciences in Europe based on a selection of leading young scientists participating in the 2008 European Young Chemists Award competition. In addition to this, the authors provide the state of the art of their field of research and the perspective or preview of future directions.
9749.59 RUR
Rogers Donald W. Molecular Structure. Understanding Steric and Electronic Effects from Molecular Mechanics models atomic orbital of ethylene molecular modeling chemistry teaching supplies
A guide to analyzing the structures and properties of organic molecules Until recently, the study of organic molecules has traveled down two disparate intellectual paths—the experimental, or physical, method and the computational, or theoretical, method. Working somewhat independently of each other, these disciplines have guided research for decades, but they are now being combined efficiently into one unified strategy. Molecular Structure delivers the essential fundamentals on both the experimental and computational methods, then goes further to show how these approaches can join forces to produce more effective analysis of the structure and properties of organic compounds by: Looking at experimental structures: electron, neutron, X-ray diffraction, and microwave spectroscopy as well as computational structures: ab initio, semi-empirical molecular orbital, and molecular mechanics calculations Discussing various electronic effects, particularly stereoelectronic effects, including hyperconjugation, negative hyperconjugation, the Bohlmann and anomeric effects, and how and why these cause changes in structures and properties of molecules Illustrating complex carbohydrate effects such as the gauche effect, the delta-two effect, and the external anomeric torsional effect Covering hydrogen bonding, the CH bond, and how energies, especially heats of formation, can be affected Using molecular mechanics to tie all of these things together in the familiar language of the organic chemist, valence bond pictures Authored by a founding father of computational chemistry, Molecular Structure broadens the scope of the subject by serving as a pioneering guide for workers in the fields of organic, biological, and computational chemistry, as they explore new possibilities to advance their discoveries. This work will also be of interest to many of those in tangential or dependent fields, including medicinal and pharmaceutical chemistry and pharmacology.
7673.87 RUR
Kenny Lipkowitz B. Reviews in Computational Chemistry models atomic orbital of ethylene molecular modeling chemistry teaching supplies
This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Volume 27 covers brittle fracture, molecular detailed simulations of lipid bilayers, semiclassical bohmian dynamics, dissipative particle dynamics, trajectory-based rare event simulations, and understanding metal/metal electrical contact conductance from the atomic to continuum scales. Also included is a chapter on career opportunities in computational chemistry and an appendix listing the e-mail addresses of more than 2500 people in that discipline. FROM REVIEWS OF THE SERIES «Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry.» —JOURNAL OF MOLECULAR GRAPHICS AND MODELLING «One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general).» —JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
14781.64 RUR
Feringa Ben L. Molecular Switches models atomic orbital of ethylene molecular modeling chemistry teaching supplies
The long-awaited second edition of the successful book covering molecular switches now in two volumes! Providing principles and applications this book brings you everything you need to know about molecular switches – a hot topic in the nanoworld. The major classes of molecular switches including catenanes, rotaxanes, azobenzenes together with polymer and biomolecular switching systems and DNA based switches are covered. Chemists and material scientists interested in one of the most innovative areas of their science will benefit greatly from reading this book. «This book will appeal most to organic chemists, because of the way new structures are introduced through their synthesis, but it will also provide a useful introduction for other scientists, provided they are conversant with molecular structures.» (Organic and Biomolecular Chemistry) «… a comprehensive and up-to-date insight …» (Chemistry & Industry)
23084.52 RUR
Gee David Multiscale Modeling of Particle Interactions. Applications in Biology and Nanotechnology models atomic orbital of ethylene molecular modeling chemistry teaching supplies
Discover how the latest computational tools are building our understanding of particle interactions and leading to new applications With this book as their guide, readers will gain a new appreciation of the critical role that particle interactions play in advancing research and developing new applications in the biological sciences, chemical engineering, toxicology, medicine, and manufacturing technology The book explores particles ranging in size from cations to whole cells to tissues and processed materials. A focus on recreating complex, real-world dynamical systems helps readers gain a deeper understanding of cell and tissue mechanics, theoretical aspects of multiscale modeling, and the latest applications in biology and nanotechnology. Following an introductory chapter, Multiscale Modeling of Particle Interactions is divided into two parts: Part I, Applications in Nanotechnology, covers: Multiscale modeling of nanoscale aggregation phenomena: applications in semiconductor materials processing Multiscale modeling of rare events in self-assembled systems Continuum description of atomic sheets Coulombic dragging and mechanical propelling of molecules in nanofluidic systems Molecular dynamics modeling of nanodroplets and nanoparticles Modeling the interactions between compliant microcapsules and patterned surfaces Part II, Applications in Biology, covers: Coarse-grained and multiscale simulations of lipid bilayers Stochastic approach to biochemical kinetics In silico modeling of angiogenesis at multiple scales Large-scale simulation of blood flow in microvessels Molecular to multicellular deformation during adhesion of immune cells under flow Each article was contributed by one or more leading experts and pioneers in the field. All readers, from chemists and biologists to engineers and students, will gain new insights into how the latest tools in computational science can improve our understanding of particle interactions and support the development of novel applications across the broad spectrum of disciplines in biology and nanotechnology.
10064.1 RUR
James Riehl P. Mirror-Image Asymmetry. An Introduction to the Origin and Consequences of Chirality models atomic orbital of ethylene molecular modeling chemistry teaching supplies
An overview of the importance and consequences of asymmetry from molecules to the macroscopic world As scientists have become more capable of probing the structure of three-dimensional objects at the molecular level, the need to understand the concept and the consequences of mirror-image asymmetry—chirality—has increased enormously. Written at an introductory level, Mirror-Image Asymmetry provides an overview of the importance and effects of asymmetry from the atomic and molecular world of physics and chemistry to the organisms and structures that we see and use in our everyday life. The reader will develop a broad appreciation of three-dimensional asymmetry from the microscopic molecular world to the macroscopic world of handedness, automobile driving, windmills, sports, and similar phenomena. The book features: An introduction to basic definitions and the nomenclature of asymmetric and dissymmetric molecules Up-to-date examples of the importance and consequences of asymmetry in modern drug applications, current theories of the origin of asymmetry in nature, and examples of molecular asymmetry in smell, taste, and insect communication Many illustrations, chemical structures, and photographs that enable the reader to connect the actual asymmetrical structures to the different phenomena that depend on structural asymmetry In the 150 years since Louis Pasteur discovered asymmetry in molecular structures, scientists have made great progress in understanding how interactions between chiral molecules influence biochemical processes. This knowledge is leading to very sophisticated asymmetric synthetic techniques that have greatly benefitted many research groups especially those in the pharmaceutical industry. This guide to the role of molecular and macroscopic chirality will inspire students and scientists in chemistry, biology, physics, and drug discovery.
3896.69 RUR
Isaac Bersuker B. Electronic Structure and Properties of Transition Metal Compounds. Introduction to the Theory models atomic orbital of ethylene molecular modeling chemistry teaching supplies
With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.
12517.22 RUR
Alexander Ruban V. The Photosynthetic Membrane. Molecular Mechanisms and Biophysics of Light Harvesting models atomic orbital of ethylene molecular modeling chemistry teaching supplies
The proteins that gather light for plant photosynthesis are embedded within cell membranes in a site called the thylakoid membrane (or the «photosynthetic membrane»). These proteins form the light harvesting antenna that feeds with energy a number of vital photosynthetic processes such as water oxidation and oxygen evolution, the pumping of protons across the thylakoid membranes coupled with the electron transport chain of the photosystems and cytochrome b6f complex, and ATP synthesis by ATP synthase utilizing the generated proton gradient. The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting is an introduction to the fundamental design and function of the light harvesting photosynthetic membrane, one of the most common and most important structures of life. It describes the underlying structure of the membrane, the variety and roles of the membrane proteins, the atomic structures of light harvesting complexes and their macromolecular assemblies, the molecular mechanisms and dynamics of light harvesting and primary energy transformations, and the broad range of adaptations to different light environments. The book shows, using the example of the photosynthetic membrane, how complex biological structures utilize principles of chemistry and physics in order to carry out biological functions. The Photosynthetic Membrane: Molecular Mechanisms of Light Harvesting will appeal to a wide audience of undergraduate and postgraduate students as well as researchers working in the fields of biochemistry, molecular biology, biophysics, plant science and bioengineering.
11070.51 RUR
XMM-016 Molecular Model Set Kit Teach General for Fans Organic Chemistry models atomic orbital of ethylene molecular modeling chemistry teaching supplies
Model XMM-016 Quantity 1 piece(s) per pack Color Grey + white + red + green + blue + black Material PP + LDPE + ABS Specification It can be easily build molecular models for aliphatic and aromatic hydrocarbons alcohols aldehydes ketones carboxylic acids esters ethers amines amides halogen compounds sugars fats amino acids alkaloids and representative of most other families of organic compounds. Your molecular model set will bring to life such concepts as stereoisomerism and conformational analysis and help you relate the physical and chemical properties of compounds to their molecular structures. Packing List 1 x Molecular model set 1 x Chinese manual
1586.35 RUR